
Microprocessors (0630371)
Fall 2010/2011 – Lecture Notes # 6

Assembly Language Programming -Introduction

Outline of the Lecture

� Example: adds and subtracts integers.
� Assembly language programs structure.
� Defining Data (Data Types).

Example: adds and subtracts integers

TITLE Add and Subtract (AddSub.asm)
; This program adds and subtracts 32-bit integers.
INCLUDE Irvine32.inc
.code
main PROC
mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registers
exit
main ENDP
END main

� The TITLE directive marks the entire line as a comment. You can put anything you want on this
line.
� The INCLUDE directive copies necessary definitions and setup information from a text file

named Irvine32.inc, located in the assembler’s INCLUDE directory
� The .code directive marks the beginning of the code segment, where all executable statements in a

program are located.
� The PROC directive identifies the beginning of a procedure.
� The MOV instruction moves (copies) the integer 10000h to the EAX register.
� The ADD instruction adds 40000h to the EAX register.
� The SUB instruction subtracts 20000h from the EAX register.
� The CALL statement calls a procedure that displays the current values of the CPU registers.
� The exit statement (indirectly) calls a predefined MS-Windows function that halts the program.
� The ENDP directive marks the end of the main procedure
� The END main directive marks the last line of the program to be assembled.

Program Output

Assembly language programs structure

TITLE Program Template (Template.asm)
; Program Description:
; Author:
; Creation Date:
; Revisions:
; Date: Modified by:
INCLUDE Irvine32.inc
.data
; (insert variables here)
.code
main PROC
; (insert executable instructions here)
exit
main ENDP
; (insert additional procedures here)
END main

Defining Segments One important function of assembler directives is to define program sections, or
segments.
� The .DATA directive identifies the area of a program containing variables:

.data
� The .CODE directive identifies the area of a program containing instructions:

.code
� The .STACK directive identifies the area of a program holding the runtime stack, setting its size:

.stack 100h

Defining Data (Data Types)

Data Types Essential Characteristics:
� Size in bits: 8, 16, 32, 48, 64, and 80.
� Signed and Unsigned.
� Pointer.
� Integral or Floating-point.

Data Definition Statement
A data definition has the following syntax:

[name] directive initializer [,initializer]...

� Name The optional name assigned to a variable must conform to the rules for identifiers, When
you declare an integer variable by assigning a label to a data allocation directive, the assembler
allocates memory space for the integer. The variable’s name becomes a label for the memory
space.
� Directive The directive in a data definition statement can be BYTE, WORD, DWORD, SBYTE,

SWORD, or any of the types listed in the following table

� In addition, it can be any of the

� Initializer At least one initializer
initializers, if any, are separated by commas.
� For integer data types, initializer

variable’s type, such as BYTE or WORD.

In addition, it can be any of the legacy data definition directives shown in the following

initializer is required in a data definition, even if it is zero. Additional

initializers, if any, are separated by commas.
initializer is an integer constant or expression matching the size of the

variable’s type, such as BYTE or WORD.

the following table

red in a data definition, even if it is zero. Additional

constant or expression matching the size of the

� The Initializers and their description

Data Initialization
� You can initialize variables when you declare them with constants or expressions

constants. The assembler generates an error if you specify an
type.
� A ? in place of an initializer indicates you do not require the assembler to

The assembler allocates the space but does not write in it.
o Use ? for buffer areas or variables your program will initialize at run time.

� You can declare and initialize variables in one step with the data directives, as
show.

descriptions are in the following table:

You can initialize variables when you declare them with constants or expressions
constants. The assembler generates an error if you specify an initial value too large for the variable

place of an initializer indicates you do not require the assembler to initialize the variable.
The assembler allocates the space but does not write in it.

areas or variables your program will initialize at run time.
itialize variables in one step with the data directives, as

You can initialize variables when you declare them with constants or expressions that evaluate to
initial value too large for the variable

initialize the variable.

areas or variables your program will initialize at run time.
itialize variables in one step with the data directives, as these examples

